基于人体动作反馈的上肢康复机器人主动感知系统

发布时间:2024-12-14 12:26

摘要: 提出了基于人体动作命令反馈的主动康复训练方法.首先,对采集到的4通道上肢肌电信号进行小波包分解,提取小波系数的log特征,输入到神经网络辨识,对上肢的8种常用动作取得了92.86%的辨识成功率.随后,将辨识结果动作以虚拟动画的形式展示给患者,患者针对辨识动作进行点头确认或者摇头拒绝.采用Kinect获取患者的动作视频,经过人脸辨识缩小检测范围,利用光流特征与先验经验结合,对比分析了投票法、Sigmoid法与tanh法的动作辨识结果,在人为干扰的条件下,Sigmoid法仍然表现优良.设计了Sigmoid法的参数修正方法,最终准确度达87.25%,无危险性误判率为12.75%.经过主动康复实验,本文提出的基于人体动作命令反馈的主动康复训练意图感知方法具有良好效果,适用于主动康复训练场合.

Abstract: An active rehabilitation training method based on the feedback of human action command is proposed. Firstly, the 4 channels of upper limb electromyogram (EMG) signals are decomposed by wavelet packet. The log features of wavelet coefficients are extracted and input into neural network for identification. The recognition accuracy of 8 common movements of the upper limb is 95.8%. Subsequently, the action of identification result is displayed to the patient with a virtual animation, and the patient nods head to accept the identification action or shakes the head to reject it. Kinect is used to get the patient movement video, and the detection range is narrowed through face recognition. Combining the characteristics of light flow with the prior experience, the action recognition results of the voting method, the Sigmoid method and the tanh method are compared and analyzed. When adding jamming artificially, the Sigmoid method still gets a good result. And then the parameters of the Sigmoid method are corrected, which leads to the accuracy of 87.25% and the no-hazard misjudgement of 12.75%. In the active rehabilitation experiment, the proposed active rehabilitation intention perception method based on human action command feedback shows fine effect, which indicates it is suitable for active rehabilitation training.

[1] 中华人民共和国民政部.2016年社会服务发展统计公报[EB/OL]. (2017-08-03)[2018-06-29]. http://www.mca.gov.cn/article/xw/mzyw/201708/20170815005382.shtml.

Ministry of Civil Affairs of the People's Republic of China. 2016 statistical bulletin of social service development[EB/OL]. (2017-08-03)[2018-06-29]. http://www.mca.gov.cn/article/xw/mzyw/201708/20170815005382.shtml.

[2]

Nef T, Riener R. ARMin-Design of a novel arm rehabilitation robot[C]//IEEE 9th International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2005:57-60.

[3]

Sugar T G, He J, Koeneman E J, et al. Design and control of RUPERT:A device for robotic upper extremity repetitive therapy[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2007, 15(3):336-346.

[4]

Cai Z, Tong D, Meadmore K L, et al. Design & control of a 3D stroke rehabilitation platform[C]//IEEE International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2011.

[5]

Gopura R A R C, Kiguchi K. Mechanical designs of active upper-limb exoskeleton robots:State-of-the-art and design difficulties[C]//11th IEEE International Conference on Rehabilitation Robotics. Piscataway, USA:IEEE, 2009:178-187.

[6] 李庆玲.基于sEMG信号的外骨骼式机器人上肢康复系统研究[D].哈尔滨:哈尔滨工业大学, 2009.

Li Q L. Study on sEMG based exoskeletal robot for upper limbs rehabilitation[D]. Harbin:Harbin Institute of Technology, 2009.

[7] 吴军.上肢康复机器人及相关控制问题研究[D].武汉:华中科技大学, 2012.

Wu J. The research on upper limb rehabilitation robot and related control problem[D]. Wuhan:Huazhong University of Science and Technology, 2012.

[8] 许祥,侯丽雅,黄新燕,等.基于外骨骼的可穿戴式上肢康复机器人设计与研究[J].机器人, 2014, 36(2):147-155. Xu X, Hou L Y, Huang X Y, et al. Design and research of a wearable robot for upper limbs rehabilitation based on exoskeleton[J]. Robot, 2014, 36(2):147-155.. [9]

Englehart K, Hudgins B, Parker P A. A wavelet-based continuous classification scheme for multifunction myoelectric control[J]. IEEE Transactions on Biomedical Engineering, 2001, 48(3):302-311.

[10] 杨沛沛.前臂肌电信号实时智能模式识别系统研究[D].武汉:华中科技大学, 2009. Yang P P. Research of real-time intelligent antebrachium EMG pattern recognition system[D]. Wuhan:Huazhong University of Science and Technology, 2009. [11] 孙欣.基于表面肌电信号定量辨识的上肢康复机器人运动控制[D].哈尔滨:哈尔滨工业大学, 2010.

Sun X. Motion control of upper limb rehabilitation robot based on sEMG's quantitative definition[D]. Harbin:Harbin Institute of Technology, 2010.

[12]

Kiguchi K, Hayashi Y. An EMG-based control for an upperlimb power-assist exoskeleton robot[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 2012, 42(4):1064-1071.

[13]

Kiguchi K, Tamura K, Hayashi Y. Estimation of user's hand motion based on EMG and EEG signals[C]//World Automation Congress. Piscataway, USA:IEEE, 2014:713-717.

[14]

Al-Quraishi M S, Ishak A J, Ahmad S A, et al. Classification of ankle joint movements based on surface electromyography signals for rehabilitation robot applications[J]. Medical & Biological Engineering & Computing, 2016, 55(5):747-758.

[15] 秦超龙,宋爱国,吴常铖,等.基于Unity3D与Kinect的康复训练机器人情景交互系统[J].仪器仪表学报,2017,38(3):530-536.

Qin C L, Song A G, Wu C C, et al. Scenario interaction system of rehabilitation training robot based on Unity3D and Kinect[J]. Chinese Journal of Scientific Instrument, 2017, 38(3):530-536.

[16] 李长风.基于AdaBoost算法的人脸检测研究[D].兰州:兰州理工大学,2014. Li C F. The research of face detection based on AdaBoost algorithm[D]. Lanzhou:Lanzhou University of Technology, 2014. [17]

Brox T, Bruhn A, Papenberg N, et al. High accuracy optical flow estimation based on a theory for warping[M]//Lecture Notes in Computer Science, Vol.2034. Berlin, Germany:Springer, 2004:25-36.

网址:基于人体动作反馈的上肢康复机器人主动感知系统 http://c.mxgxt.com/news/view/186493

相关内容

基于人体动作反馈的上肢康复机器人主动感知系统
上肢康复训练机器人
精准训练,缩短康复周期!这款机器人为病患带来希望
精准训练 缩短康复周期 这款机器人为病患带来希望
健康检测机器人
儿童康复训练.ppt
脑梗康复训练方法大揭秘,助你重拾健康!
儿童康复运动训练的几种方法,让孩子健康成
美国军方大力发展无人作战系统,放言“15年内美军三分之一是机器人”
3D运动健康下载

随便看看