水稻籽粒伸长突变体lgdp的鉴定与基因定位
发布时间:2024-12-19 22:28
[1] 施思, 刘坚, 马伯军, 钱前. 水稻颖壳发育的研究进展. 中国稻米, 2012, 18(5): 25-29.
doi: 10.3969/j.issn.1006-8082.2012.05.007 Shi S, Liu J, Ma B J, Qian Q. Research progress of rice glume development. Chin Rice, 2012, 18(5): 25-29. (in Chinese with English abstract)[2] Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284-10289.
doi: 10.1073/pnas.96.18.10284pmid: 10468600[3] Wang L, Xu Y Y, Ma Q B, Li D, Xu Z H, Chong K. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res, 2006, 16: 916-922.
doi: 10.1038/sj.cr.7310111pmid: 17117160[4] Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. Plant J, 2011, 67: 907-916.
doi: 10.1111/j.1365-313X.2011.04643.x[5] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584.
doi: 10.1073/pnas.1014419107pmid: 20974950[6] Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014, 46: 652-656.
doi: 10.1038/ng.2958pmid: 24777451[7] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1pmid: 16453132[8] Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K,, McCouch S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182: 1323-1334.
doi: 10.1534/genetics.109.103002pmid: 19506305[9] Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-ypmid: 29487318[10] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352pmid: 19305410[11] Tao Y J, Miao J, Wang J, Li W Q, Xu Y, Wang F Q, Jiang Y J, Chen Z H, Fan F J, Xu M B, Zhou Y, Liang G H, Yang J. RGG1, involved in the cytokinin regulatory pathway, controls grain size in rice. Rice, 2020, 13: 76.
doi: 10.1186/s12284-020-00436-xpmid: 33169285[12] Miao J, Yang Z F, Zhang D P, Wang Y Z, Xu M B, Zhou L H, Wang J, Wu S J, Yao Y L, Du X, Gu F F, Gong Z Y, Gu M H, Liang G H, Zhou Y. Mutation of RGG 2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnol J, 2019, 17: 650-664.
doi: 10.1111/pbi.13005pmid: 30160362[13] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014[14] Huang K, Wang D K, Duan P G, Zhang B L, Xu R, Li N, Li Y H. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J, 2017, 91: 849-860.
doi: 10.1111/tpj.2017.91.issue-5[15] Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol Plant, 2021, 14: 1266-1280.
doi: 10.1016/j.molp.2021.04.011pmid: 33930509[16] Wang S S, Wu K, Qian Q, Liu Q, Li Q, Pan Y J, Ye Y F, Liu X Y, Wang J, Zhang J Q, Li S, Wu Y J, Fu X D. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res, 2017, 27: 1142-1156.
doi: 10.1038/cr.2017.98pmid: 28776570[17] Shi C L, Ren Y L, Liu L L, Wang F, Zhang H, Tian P, Pan T, Wang Y F, Jing R N, Liu T Z, Wu F Q, Lin Q B, Lei C L, Zhang X, Zhu S S, Guo X P, Wang J L, Zhao Z C, Wang J, Zhai H Q, Cheng Z J, Wan J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 2019, 180: 381-391.
doi: 10.1104/pp.19.00065pmid: 30796160[18] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30: 871-888.
doi: 10.1105/tpc.17.00959[19] Xu R, Duan P G, Yu H Y, Zhou Z K, Zhang B L, Wang R C, Li J, Zhang G Z, Zhuang S S, Lyu J, Li N, Chai T Y, Tian Z X, Yao S G, Li Y H. Control of grain size and weight by the OsMKKK10- OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant, 2018, 11: 860-873.
doi: 10.1016/j.molp.2018.04.004[20] Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen‐activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557.
doi: 10.1111/tpj.2014.77.issue-4[21] Li N, Xu R, Duan P G, Li Y H. Control of grain size in rice. Plant Reprod, 2018, 31: 237-251.
doi: 10.1007/s00497-018-0333-6pmid: 29523952[22] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
doi: 10.1105/tpc.014712pmid: 14615594[23] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790.
doi: 10.1105/tpc.104.024950pmid: 15705958[24] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102-11107.
doi: 10.1073/pnas.1512748112pmid: 26283354[25] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/ SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018, 11: 736-749.
doi: 10.1016/j.molp.2018.03.005[26] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018, 11: 750-753.
doi: 10.1016/j.molp.2018.03.007[27] Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Mol Plant, 2018, 11: 754-756.
doi: S1674-2052(18)30092-3pmid: 29567448[28] Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8: 1455-1465.
doi: 10.1016/j.molp.2015.07.002pmid: 26187814[29] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203pmid: 27250749[30] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352pmid: 26147620[31] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
doi: 10.1038/ng.3346pmid: 26147619[32] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612pmid: 23583977[33] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828pmid: 1682921[34] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
doi: 10.1093/nar/8.19.4321pmid: 7433111[35] Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas, 2003, 25: 705-707.[36] Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871-884.
doi: 10.1105/tpc.12.6.871pmid: 10852934[37] Chen Z X, Wu J G, Ding W N, Chen H M, Wu P, Shi C H. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta, 2006, 223: 882-890.
doi: 10.1007/s00425-005-0141-8[38] Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018, 9: 852.
doi: 10.1038/s41467-018-03047-9pmid: 29487282[39] Wang C S, Tang S C, Zhan Q L, Hou Q Q, Zhao Y, Zhao Q, Feng Q, Zhou C C, Lyu D F, Cui L L, Li Y, Miao J S, Zhu C R, Lu Y Q, Wang Y C, Wang Z Q, Zhu J J, Shangguan Y Y, Gong J Y, Yang S H, Wang W Q, Zhang J F, Xie H A, Huang X H, Han B. Dissecting a heterotic gene through Graded Pool-Seq mapping informs a rice-improvement strategy. Nat Commun, 2019, 10: 2982.
doi: 10.1038/s41467-019-11017-y
追忆袁隆平与广东海洋大学的四十载情谊:因杂交稻结缘,海水稻续缘
袁隆平发明杂交水稻:一颗种子改变世界
DNA鉴定揭秘:如何通过基因找到家族血缘?
特稿|86岁的“杂交水稻之父”袁隆平和他的超级稻
悼念“杂交水稻之父”袁隆平:他曾和广州有一个约定!
袁隆平与杂交稻的发展历程
袁爷爷留下的这粒种子,我们如何传承
最好的一个种了1.2亿亩!袁隆平与江苏杂交水稻不解之缘
泪目!袁隆平母亲是位扬州姑娘,他与扬州的点滴......
doi: 10.3969/j.issn.1006-8082.2012.05.007 Shi S, Liu J, Ma B J, Qian Q. Research progress of rice glume development. Chin Rice, 2012, 18(5): 25-29. (in Chinese with English abstract)[2] Ashikari M, Wu J Z, Yano M, Sasaki T, Yoshimura A. Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the α-subunit of GTP-binding protein. Proc Natl Acad Sci USA, 1999, 96: 10284-10289.
doi: 10.1073/pnas.96.18.10284pmid: 10468600[3] Wang L, Xu Y Y, Ma Q B, Li D, Xu Z H, Chong K. Heterotrimeric G protein α subunit is involved in rice brassinosteroid response. Cell Res, 2006, 16: 916-922.
doi: 10.1038/sj.cr.7310111pmid: 17117160[4] Utsunomiya Y, Samejima C, Takayanagi Y, Izawa Y, Yoshida T, Sawada Y, Fujisawa Y, Kato H, Iwasaki Y. Suppression of the rice heterotrimeric G protein β-subunit gene, RGB1, causes dwarfism and browning of internodes and lamina joint regions. Plant J, 2011, 67: 907-916.
doi: 10.1111/j.1365-313X.2011.04643.x[5] Mao H L, Sun S Y, Yao J L, Wang C R, Yu S B, Xu C G, Li X H, Zhang Q F. Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA, 2010, 107: 19579-19584.
doi: 10.1073/pnas.1014419107pmid: 20974950[6] Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet, 2014, 46: 652-656.
doi: 10.1038/ng.2958pmid: 24777451[7] Fan C C, Xing Y Z, Mao H L, Lu T T, Han B, Xu C G, Li X H, Zhang Q F. GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet, 2006, 112: 1164-1171.
doi: 10.1007/s00122-006-0218-1pmid: 16453132[8] Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K,, McCouch S. Evolutionary history of GS3, a gene conferring grain length in rice. Genetics, 2009, 182: 1323-1334.
doi: 10.1534/genetics.109.103002pmid: 19506305[9] Sun S Y, Wang L, Mao H L, Shao L, Li X H, Xiao J H, Ouyang Y D, Zhang Q F. A G-protein pathway determines grain size in rice. Nat Commun, 2018, 9: 851.
doi: 10.1038/s41467-018-03141-ypmid: 29487318[10] Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet, 2009, 41: 494-497.
doi: 10.1038/ng.352pmid: 19305410[11] Tao Y J, Miao J, Wang J, Li W Q, Xu Y, Wang F Q, Jiang Y J, Chen Z H, Fan F J, Xu M B, Zhou Y, Liang G H, Yang J. RGG1, involved in the cytokinin regulatory pathway, controls grain size in rice. Rice, 2020, 13: 76.
doi: 10.1186/s12284-020-00436-xpmid: 33169285[12] Miao J, Yang Z F, Zhang D P, Wang Y Z, Xu M B, Zhou L H, Wang J, Wu S J, Yao Y L, Du X, Gu F F, Gong Z Y, Gu M H, Liang G H, Zhou Y. Mutation of RGG 2, which encodes a type B heterotrimeric G protein γ subunit, increases grain size and yield production in rice. Plant Biotechnol J, 2019, 17: 650-664.
doi: 10.1111/pbi.13005pmid: 30160362[13] Song X J, Huang W, Shi M, Zhu M Z, Lin H X. A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet, 2007, 39: 623-630.
doi: 10.1038/ng2014[14] Huang K, Wang D K, Duan P G, Zhang B L, Xu R, Li N, Li Y H. WIDE AND THICK GRAIN 1, which encodes an otubain-like protease with deubiquitination activity, influences grain size and shape in rice. Plant J, 2017, 91: 849-860.
doi: 10.1111/tpj.2017.91.issue-5[15] Hao J Q, Wang D K, Wu Y B, Huang K, Duan P G, Li N, Xu R, Zeng D L, Dong G J, Zhang B L, Zhang L M, Inzé D, Qian Q, Li Y H. The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol Plant, 2021, 14: 1266-1280.
doi: 10.1016/j.molp.2021.04.011pmid: 33930509[16] Wang S S, Wu K, Qian Q, Liu Q, Li Q, Pan Y J, Ye Y F, Liu X Y, Wang J, Zhang J Q, Li S, Wu Y J, Fu X D. Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Res, 2017, 27: 1142-1156.
doi: 10.1038/cr.2017.98pmid: 28776570[17] Shi C L, Ren Y L, Liu L L, Wang F, Zhang H, Tian P, Pan T, Wang Y F, Jing R N, Liu T Z, Wu F Q, Lin Q B, Lei C L, Zhang X, Zhu S S, Guo X P, Wang J L, Zhao Z C, Wang J, Zhai H Q, Cheng Z J, Wan J M. Ubiquitin specific protease 15 has an important role in regulating grain width and size in rice. Plant Physiol, 2019, 180: 381-391.
doi: 10.1104/pp.19.00065pmid: 30796160[18] Guo T, Chen K, Dong N Q, Shi C L, Ye W W, Gao J P, Shan J X, Lin H X. GRAIN SIZE AND NUMBER1 negatively regulates the OsMKKK10-OsMKK4-OsMPK6 cascade to coordinate the trade-off between grain number per panicle and grain size in rice. Plant Cell, 2018, 30: 871-888.
doi: 10.1105/tpc.17.00959[19] Xu R, Duan P G, Yu H Y, Zhou Z K, Zhang B L, Wang R C, Li J, Zhang G Z, Zhuang S S, Lyu J, Li N, Chai T Y, Tian Z X, Yao S G, Li Y H. Control of grain size and weight by the OsMKKK10- OsMKK4-OsMAPK6 signaling pathway in rice. Mol Plant, 2018, 11: 860-873.
doi: 10.1016/j.molp.2018.04.004[20] Duan P G, Rao Y C, Zeng D L, Yang Y L, Xu R, Zhang B L, Dong G J, Qian Q, Li Y H. SMALL GRAIN 1, which encodes a mitogen‐activated protein kinase kinase 4, influences grain size in rice. Plant J, 2014, 77: 547-557.
doi: 10.1111/tpj.2014.77.issue-4[21] Li N, Xu R, Duan P G, Li Y H. Control of grain size in rice. Plant Reprod, 2018, 31: 237-251.
doi: 10.1007/s00497-018-0333-6pmid: 29523952[22] Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell, 2003, 15: 2900-2910.
doi: 10.1105/tpc.014712pmid: 14615594[23] Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell, 2005, 17: 776-790.
doi: 10.1105/tpc.104.024950pmid: 15705958[24] Liu L C, Tong H N, Xiao Y H, Che R H, Xu F, Hu B, Liang C Z, Chu J F, Li J Y, Chu C C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc Natl Acad Sci USA, 2015, 112: 11102-11107.
doi: 10.1073/pnas.1512748112pmid: 26283354[25] Hu Z J, Lu S J, Wang M J, He H H, Sun L, Wang H R, Liu X H, Jiang L, Sun J L, Xin X Y, Kong W, Chu C C, Xue H W, Yang J S, Luo X J, Liu J X. A novel QTL qTGW3 encodes the GSK3/ SHAGGY-like kinase OsGSK5/OsSK41 that interacts with OsARF4 to negatively regulate grain size and weight in rice. Mol Plant, 2018, 11: 736-749.
doi: 10.1016/j.molp.2018.03.005[26] Ying J Z, Ma M, Bai C, Huang X H, Liu J L, Fan Y Y, Song X J. TGW3, a major QTL that negatively modulates grain length and weight in rice. Mol Plant, 2018, 11: 750-753.
doi: 10.1016/j.molp.2018.03.007[27] Xia D, Zhou H, Liu R J, Dan W H, Li P B, Wu B, Chen J X, Wang L Q, Gao G J, Zhang Q L, He Y Q. GL3.3, a novel QTL encoding a GSK3/SHAGGY-like kinase, epistatically interacts with GS3 to produce extra-long grains in rice. Mol Plant, 2018, 11: 754-756.
doi: S1674-2052(18)30092-3pmid: 29567448[28] Hu J, Wang Y X, Fang Y X, Zeng L J, Xu J, Yu H P, Shi Z Y, Pan J J, Zhang D, Kang S J, Zhu L, Dong G J, Guo L B, Zeng D L, Zhang G H, Xie L H, Xiong G S, Li J Y, Qian Q. A rare allele of GS2 enhances grain size and grain yield in rice. Mol Plant, 2015, 8: 1455-1465.
doi: 10.1016/j.molp.2015.07.002pmid: 26187814[29] Duan P G, Ni S, Wang J M, Zhang B L, Xu R, Wang Y X, Chen H Q, Zhu X D, Li Y H. Regulation of OsGRF4 by OsmiR396 controls grain size and yield in rice. Nat Plants, 2015, 2: 15203.
doi: 10.1038/nplants.2015.203pmid: 27250749[30] Wang S K, Li S, Liu Q, Wu K, Zhang J Q, Wang S S, Wang Y, Chen X B, Zhang Y, Gao C X, Wang F, Huang H X, Fu X D. The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet, 2015, 47: 949-954.
doi: 10.1038/ng.3352pmid: 26147620[31] Wang Y X, Xiong G S, Hu J, Jiang L, Yu H, Xu J, Fang Y X, Zeng L J, Xu E B, Xu J, Ye W J, Meng X B, Liu R F, Chen H Q, Jing Y H, Wang Y H, Zhu X D, Li J Y, Qian Q. Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet, 2015, 47: 944-948.
doi: 10.1038/ng.3346pmid: 26147619[32] Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B I, Onishi A, Miyagawa H, Katoh E. Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet, 2013, 45: 707-711.
doi: 10.1038/ng.2612pmid: 23583977[33] Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA, 1991, 88: 9828-9832.
doi: 10.1073/pnas.88.21.9828pmid: 1682921[34] Murray M G, Thompson W F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, 1980, 8: 4321-4326.
doi: 10.1093/nar/8.19.4321pmid: 7433111[35] Sang X C, He G H, Zhang Y, Yang Z L, Pei Y. The simple gain of templates of rice genomes DNA for PCR. Hereditas, 2003, 25: 705-707.[36] Jeon J S, Jang S, Lee S, Nam J, Kim C, Lee S H, Chung Y Y, Kim S R, Lee Y H, Cho Y G, An G. Leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell, 2000, 12: 871-884.
doi: 10.1105/tpc.12.6.871pmid: 10852934[37] Chen Z X, Wu J G, Ding W N, Chen H M, Wu P, Shi C H. Morphogenesis and molecular basis on naked seed rice, a novel homeotic mutation of OsMADS1 regulating transcript level of AP3 homologue in rice. Planta, 2006, 223: 882-890.
doi: 10.1007/s00425-005-0141-8[38] Liu Q, Han R X, Wu K, Zhang J Q, Ye Y F, Wang S S, Chen J F, Pan Y J, Li Q, Xu X P, Zhou J W, Tao D Y, Wu Y J, Fu X D. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nat Commun, 2018, 9: 852.
doi: 10.1038/s41467-018-03047-9pmid: 29487282[39] Wang C S, Tang S C, Zhan Q L, Hou Q Q, Zhao Y, Zhao Q, Feng Q, Zhou C C, Lyu D F, Cui L L, Li Y, Miao J S, Zhu C R, Lu Y Q, Wang Y C, Wang Z Q, Zhu J J, Shangguan Y Y, Gong J Y, Yang S H, Wang W Q, Zhang J F, Xie H A, Huang X H, Han B. Dissecting a heterotic gene through Graded Pool-Seq mapping informs a rice-improvement strategy. Nat Commun, 2019, 10: 2982.
doi: 10.1038/s41467-019-11017-y
网址:水稻籽粒伸长突变体lgdp的鉴定与基因定位 http://c.mxgxt.com/news/view/339028
下一篇: 干扰素抗病毒效力影响因素的研究进
相关内容
袁隆平:稻田逐梦 用一粒种子改变世界—新闻—科学网追忆袁隆平与广东海洋大学的四十载情谊:因杂交稻结缘,海水稻续缘
袁隆平发明杂交水稻:一颗种子改变世界
DNA鉴定揭秘:如何通过基因找到家族血缘?
特稿|86岁的“杂交水稻之父”袁隆平和他的超级稻
悼念“杂交水稻之父”袁隆平:他曾和广州有一个约定!
袁隆平与杂交稻的发展历程
袁爷爷留下的这粒种子,我们如何传承
最好的一个种了1.2亿亩!袁隆平与江苏杂交水稻不解之缘
泪目!袁隆平母亲是位扬州姑娘,他与扬州的点滴......